ПРЕСТУПЛЕНИЕ КЛАВДИЯ ПТОЛЕМЕЯ

СОДЕРЖАНИЕ
Предисловие редактора перевода

Предисловие автора

Глава   I. Объяснение явлений в астрономии

Глава   II. Греческая математика

Глава   III. Земля

Глава   IV. Строение мира

Глава  V. Солнце и связанные с ним вопросы

Глава   VI. Долгота полной Луны

Глава   VII. Долгота Луны в любой фазе

Глава  VIII. Размеры Солнца и Луны. Расстояния до них

Глава   IX. Звезды

Глава   X. Движение Меркурия

Глава   XI. Венера и внешние планеты

Глава   XII. Некоторые второстепенные вопросы

Глава   XIII. Оценка деятельности Птолемея

Приложение А. Специальные термины и обозначения

Приложение Б. Метод Аристарха для нахождения размеров Солнца

Приложение В. Как Птолемей пользовался вавилонским календарем

Список литературы

Клавдий Птолемей РУКОВОДСТВО ПО ГЕОГРАФИИ ("Античная география", составитель проф. М.С.Боднарский, Государственное издательство географической литературы, Москва - 1953) часть 31/p>

Таким образом, разбив экватор на 180 градусов, соответствующих двенадцати часовым промежуткам, и обозначив их цифрами, начиная от самого западного меридиана, мы будем все время перемещать наше ребро линейки к указываемому градусу долготы. И находя с помощью делений на линейке данную широту, мы надлежащим образом отметим каждый пункт -- точно так же, как это было показано, когда речь шла об изображении на сфере. Черт. II. В нашем чертеже вселенной было бы еще больше сходства с очертаниями земли и больше соразмерности с ними, если бы и линии меридианов мы представили в том виде, какой они имеют на глобусе, когда он неподвижен и одна и та же плоскость проходит через глаз, через находящуюся перед глазом точку пересечения меридиана, делящего пополам известную нам землю в длину, и параллели, делящей ее пополам в ширину, и через центр шара, так что противолежащие границы земли одинаково воспринимаются глазом и видны одинаково. Прежде всего, чтобы найти величину угла между кругами параллелей и плоскостью, проходящей через указанную точку пересечения и через центр шара перпендикулярно среднему меридиану известной нам земли, представим себе, что находящееся перед нашими глазами полушарие ограничено большим кругом ABGD, что полуокружностью меридиана, делящего это полушарие надвое, является линия AEGи что находящейся перед глазами точкой пересечения этой полуокружности со средней параллелью известной нам земли является точка E. Затем проведем через точку другую полуокружность большого круга BED, так, чтобы она была перпендикулярна полуокружности AEG. Ясно, что плоскость ее пройдет через глаз. Отмерив дугу EZв 235/6 градуса (так как именно на столько градусов отстоит экватор от параллели Сиены, а эта параллель проходит приблизительно по середине известной нам земли), проведем через точку Z полуокружность экватора -- BZA. Таким образом, окажется, что угол между плоскостью экватора и прочих параллелей, с одной стороны, и плоскостью, проходящей через глаз, с другой, равняется 235/6 градуса, содержащимся в дуге EZ

кавер группа хиты. Найти сайт клуб бывших жен.
Hosted by uCoz