ПРЕСТУПЛЕНИЕ КЛАВДИЯ ПТОЛЕМЕЯ
Глава I. Объяснение явлений в астрономии
Глава II. Греческая математика
Глава III. Земля
Глава IV. Строение мира
Глава V. Солнце и связанные с ним вопросы
Глава VI. Долгота полной Луны
Глава VII. Долгота Луны в любой фазе
Глава VIII. Размеры Солнца и Луны. Расстояния до них
Глава IX. Звезды
Глава X. Движение Меркурия
Глава XI. Венера и внешние планеты
Глава XII. Некоторые второстепенные вопросы
Глава XIII. Оценка деятельности Птолемея
Приложение А. Специальные термины и обозначения
Приложение Б. Метод Аристарха для нахождения размеров Солнца
Приложение В. Как Птолемей пользовался вавилонским календарем
Мир чисел часть 25/p>
Ведь всюду, где надо что-то счи тать, измерять, сравнивать, без ма тематики не обойтись. А чем дальше, тем больше и точнее нужно было считать. Одна за другой появлялись новые, всё более сложные математические задачи, которые ждали своего решения. И математика гигантскими шагами пошла вперёд. Началась новая история математики, эпоха «великих математических открытий», которая продолжается и посейчас, в наши дни. К сожалению, по-настоящему поговорить о математике нового времени нам с вами не придётся, потому что почти все математические задачи стали очень сложными. Просто — без формул — о них не расскажешь. А главное, в новое время математики сделали так много замечательных открытий, что если бы их только перечислить, то нашу книжку пришлось бы сделать в несколько раз толще. С каждым десятилетием матема тика становилась всё нужнее людям. Теперь расчётами и вычислениями приходилось заниматься не только самим математикам: и инженеры, и моряки, и строители на каждом шагу сталкивались с вычислениями. Было очень нужно придумать средство для того, чтобы упростить и ускорить расчёты. Такое средство придумали шотландец Непир и швейцарец Бюрги. В XVII веке, почти одновременно друг с другом, они изобрели логарифмы, вы изучите их в школе. Вы, конечно, знаете по опыту, что умножать и делить большие числа гораздо сложнее, чем складывать или вычитать. А если надо возвести число в степень —несколько раз умножить само на себя, — то это ещё сложнее и дольше. Так вот оказалось, что, вместо того чтобы перемножать два каких-то числа, можно сложить два других чис ла — их логарифмы. Вместо деления двух чисел мож но вычесть их логарифмы. Словом, с помощью логарифмов сложные действия можно заменить более простыми. С логарифмами расчёты пошли в десятки раз скорее и легче. Недаром великий французский математик Лаплас говорил, что изо бретение логарифмов удлинило жизнь людей. Вскоре после логарифмов изобрели счётную логарифмическую линейку. Такую линейку — с движком посередине и стёклышком, нониусом, — вы, наверное, уже видели