ПРЕСТУПЛЕНИЕ КЛАВДИЯ ПТОЛЕМЕЯ
Глава I. Объяснение явлений в астрономии
Глава II. Греческая математика
Глава III. Земля
Глава IV. Строение мира
Глава V. Солнце и связанные с ним вопросы
Глава VI. Долгота полной Луны
Глава VII. Долгота Луны в любой фазе
Глава VIII. Размеры Солнца и Луны. Расстояния до них
Глава IX. Звезды
Глава X. Движение Меркурия
Глава XI. Венера и внешние планеты
Глава XII. Некоторые второстепенные вопросы
Глава XIII. Оценка деятельности Птолемея
Приложение А. Специальные термины и обозначения
Приложение Б. Метод Аристарха для нахождения размеров Солнца
Приложение В. Как Птолемей пользовался вавилонским календарем
Мир чисел часть 7/p>
Греческие скульпторы созда вали из мрамора чудесные статуи. А с греческих учёных началась не только «настоящая» математика, но и очень многие другие науки, которые вы про ходите в школе. А знаете, почему греки обогнали в математике все другие народы? Потому что они хорошо умели... спорить. Чем же споры могут помочь науке? чисиъ - ъда В древние времена Греция состо яла из многих маленьких государств. Чуть не каждый город с окрестными деревнями был отдельным государством. Каждый раз, когда приходилось решать какой-нибудь важный государственный вопрос, горожане собирались на площадь, обсуждали его, спорили о том, как сделать луч ше, а потом голосовали. Понятно, что они были хорошими спорщиками: на таких собраниях приходилось опровергать противников, рассуждать, доказывать свою правоту. Греки считали, что спор помогает найти самое лучшее, самое правильное решение. Они даже изречение придумали: «В споре рождается истина». И в науке греки стали поступать так же, как на народном собрании. Они не просто заучивали правила, а доискивались причины: почему правильно делать так, а не иначе. Каждое правило греческие математики старались объяснить, доказать, что оно действительно верное. Для этого они спорили друг с другом, рассуждали, старались найти в рассуждениях ошибки. Докажут одно правило — рассуждения ведут к другому, более сложному, потом — к третьему, к четвёртому. Из правил складывались законы, а из законов — наука математика. Едва родившись, греческая математика сразу семимильными шагами пошла вперёд. Ей помогали чудесные сапоги-скороходы, которых раньше у других народов не было. Они назывались «рассуждение» и «доказательство». Давайте ещё раз вернёмся к нашему старому «знакомому» — прямоугольному египетскому треугольнику. Вы заметили, что 3, 4 и 5 — не случайные числа? Смотрите-ка: 3 ? 3 = 9; 4 ? 4 = 16; 5 ? 5 = 25. А если теперь сложить два первых числа? Ведь тоже получается 25. Оказывается, стороны египетского треугольника обладают каким-то особым свойством