ПРЕСТУПЛЕНИЕ КЛАВДИЯ ПТОЛЕМЕЯ

СОДЕРЖАНИЕ
Предисловие редактора перевода

Предисловие автора

Глава   I. Объяснение явлений в астрономии

Глава   II. Греческая математика

Глава   III. Земля

Глава   IV. Строение мира

Глава  V. Солнце и связанные с ним вопросы

Глава   VI. Долгота полной Луны

Глава   VII. Долгота Луны в любой фазе

Глава  VIII. Размеры Солнца и Луны. Расстояния до них

Глава   IX. Звезды

Глава   X. Движение Меркурия

Глава   XI. Венера и внешние планеты

Глава   XII. Некоторые второстепенные вопросы

Глава   XIII. Оценка деятельности Птолемея

Приложение А. Специальные термины и обозначения

Приложение Б. Метод Аристарха для нахождения размеров Солнца

Приложение В. Как Птолемей пользовался вавилонским календарем

Список литературы

В.А.Бронштэн "Клавдий Птолемей, II век н.э., М., Наука, 1988" Главы часть 46/p>

Эксцентриситет ее деферента оказывается равным 0,016, что очень близко к половине полного эксцентриситета, найденного Птолемеем (0,033) и Тихо Браге (0,036). По современным данным эксцентриситет земной орбиты равен 0,0167. Убедившись в справедливости гипотезы биссекции, Кеплер получает из нее строгое доказательство, что скорости планеты в перигелии и афелии обратно пропорциональны со расстояниям от Солнца и этих точках. Затем по известным ему радиусам-векторам Земли Кеплер вычисляет их через каждый градус от перигелия до афелия и нелегким путем геометрических построений и рассуждении приходит в конце концов к закону площадей, ныне известному как второй закон Кеплера: площади, описываемые радиусом-вектором планеты, пропорциональны временам. После такого успеха Кеплер приступает к четвертой части "Новой астрономии", которую он называет так: "Нахождение истинной меры для первого неравенства на основе физических причин и по моей собственной теории". Теперь в его распоряжении -- точная форма орбиты Земли, закон площадей и доказанное правило биссекции полного эксцентриситета. Но Кеплер хочет еще раз проверить его. Он объединяет пять наблюдений Марса вблизи перигелия и три вблизи афелия, находит наибольшее, наименьшее и среднее расстояния Марса от Солнца и эксцентриситет его орбиты. Они приведены в табл. 13 в сравнении с современными данными (все расстояния выражены в астрономических единицах). Это сравнение говорит нам и о точности расчетов Кеплера, и о точности наблюдений Тихо, на которых они основаны. Мы видим также, насколько подтверждается гипотеза биссекции. Таблица 13. Параметры орбиты Марса Параметр Но Кеплеру По современным данным Расстояние в афелии, а.е. 1,66780 1,66597 Расстояние в перигелии, а.е. 1,38500 1,38141 Среднее расстояние, а.е. 1,52640 1,52369 Эксцентриситет 0,09264 0,09338 Дальше Кеплер сравнивает теоретически вычисленные на основании закона площадей расстояния от Солнца до Марса с расстояниями, полученными из обработки наблюдений Тихо, и приходит к важнейшему выводу: орбита Марса между перигелием и афелием лежит внутри окружности, она овальна! Но долго еще он ищет истинную форму орбиты Марса. Яйцеобразная кривая (овоид) не подходит -- истинный путь Марса лежит между ней и окружностью. Кеплер в последний раз вводит движение планеты по эпициклу. С третьей попытки Кеплер находит, наконец, истинную форму орбиты Марса -- эллипс, причем Солнце находится в одном из его фокусов. Открыт первый закон Кеплера. Сравнение с наблюдениями Тихо показывает их полное совпадение с теорией. Громадная работа завершена! Так эпициклы, деференты и экванты теории Птоломея и соединении с гелиоцентрической системой Коперника проложили путь к законам Кеплера. Проложили -- чтобы навсегда уйти в историю. Законы Кеплера ознаменовали начало подлинно новой астрономии. Впереди было открытие Кеплером своего третьего закона, связывающего расстояния и периоды обращений планет, а затем -- гениальный труд Исаака Ньютона, который па основании этих заколов вывел закон всемирного тяготения. В свете истории развития астрономической науки мы можем теперь глубже понять роль и место в ней Клавдия Птолемея. С одной стороны, он собрал и обобщил всю сумму знаний своих предшественников, создал поистине великое построение астрономической картины мира, отвечающее представлениям своей эпохи; С другой стороны, он как бы предоставил это построение в руки исследователей позднейших эпох, которые смогли так его переделать, что получилось величественное здание, имя которому -- научное представление о Вселенной.

Дешевая мягкая мебель, купить диван со склада киев .
Hosted by uCoz